
OMG Systems Modeling Language 
(OMG SysML™) 

Tutorial

19 June 2008 revb

Sanford Friedenthal
Alan Moore
Rick Steiner
(emails included in references at end)

Copyright © 2006-2008 by Object Management Group.
Published and used by INCOSE and affiliated societies with permission.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 2

OMG SysML™ Specification

• Specification status
– Adopted by OMG in May ’06
– Available Specification v1.0 in Sept ‘07
– Revision task force for v1.1 in July ‘07

• This tutorial is based on the OMG SysML available 
specification (formal/2007-09-01)

• This tutorial, the specifications, papers, and vendor info 
can be found on the OMG SysML Website at 
http://www.omgsysml.org/

http://www.omgsysml.org/


4/15/2008 Copyright © 2006-2008 by Object Management Group. 3

Objectives & Intended Audience

At the end of this tutorial, you should have an awareness of:
• Motivation of model-based systems engineering approach
• SysML diagrams and language concepts
• How to apply SysML as part of a model based SE process
• Basic considerations for transitioning to SysML

This course is not intended to make you a systems modeler! 
You must use the language.

Intended Audience:
• Practicing Systems Engineers interested in system modeling
• Software Engineers who want to better understand how to 

integrate software and system models
• Familiarity with UML is not required, but it helps



4/15/2008 Copyright © 2006-2008 by Object Management Group. 4

Topics

• Motivation & Background
• Diagram Overview and Language Concepts
• SysML Modeling as Part of SE Process

– Structured Analysis – Distiller Example
– OOSEM – Enhanced Security System Example

• SysML in a Standards Framework
• Transitioning to SysML
• Summary 



Motivation & Background



4/15/2008 Copyright © 2006-2008 by Object Management Group. 6

SE Practices for Describing Systems

• Specifications

• Interface 
requirements

• System design

• Analysis & Trade-off

• Test plans

Moving from Document centric to Model centric Moving from Document centric to Model centric 

PastPast FutureFuture



4/15/2008 Copyright © 2006-2008 by Object Management Group. 7

System Modeling

Start Shift Accelerate Brake

Engine Transmission Transaxle

Control
Input

Power
Equations

Vehicle
Dynamics

Mass
Properties

ModelStructural
Model

Safety
Model

Cost
Model

Requirements

Integrated System Model Must Address Multiple Aspects of a SysteIntegrated System Model Must Address Multiple Aspects of a System m 



4/15/2008 Copyright © 2006-2008 by Object Management Group. 8

Model Based Systems Engineering 
Benefits

• Shared understanding of system requirements and design
– Validation of requirements
– Common basis for analysis and design
– Facilitates identification of risks

• Assists in managing complex system development
– Separation of concerns via multiple views of integrated model
– Supports traceability through hierarchical system models
– Facilitates impact analysis of requirements and design changes
– Supports incremental development & evolutionary acquisition

• Improved design quality
– Reduced errors and ambiguity
– More complete representation

• Supports early and on-going verification & validation to reduce risk
• Provides value through life cycle (e.g., training)
• Enhances knowledge capture



4/15/2008 Copyright © 2006-2008 by Object Management Group. 9

System-of-Systems

Boundaries

Interactions

Modeling Needed to Manage System ComplexityModeling Needed to Manage System Complexity



4/15/2008 Copyright © 2006-2008 by Object Management Group. 10

Modeling at Multiple Levels 
of the System

<TITLE>System Design<TITLE>
<META http-equiv="REFRESH"
<!--CSSDATA:966533483-->
<SCRIPT src="/virtual/2000/code
<LINK rel="stylesheet" href="/
<SCRIPT language="javascript"

Data Processing
Terminal
Hardware

Data Processing
Terminal
Hardware

TCIM

Voice Comm
Hardware includes

MSE

Voice Comm
Hardware includes

MSE

Operator Interface
Hardware

Operator Interface
Hardware

Force Level
Control System

Force Level
Control System

Power Generation
and Distribution

Power Generation
and Distribution

EPLRS or SINGARS
Terminal

EPLRS or SINGARS
Terminal

JTIDS
Terminal

JTIDS
Terminal

TCIM

PLGR (GPS)

PLGR
(GPS)

Software

Software

A2C2 Subsystem

ABMOC Subsystem

Power

Power

Power

Power

Power

Power

Power

Voice & TADIL-B Data

Power

Power

Power

Power

Power

Power
Power

Voice & TADIL-B Data

Tech Support System Entry
Primary Key

TSS_Entry_Number   [PK1]
Non-Key Attributes

Windows_Version
TSS_Description

Customer
Primary Key

Customer_ID   [PK1]
Non-Key Attributes

Customer_Name
Purchase_Contact
Customer_Address

Software License
Primary Key

Serial_Number   [PK1]
Non-Key Attributes

Technical_Contact

Client Call
Primary Key

Serial_Number   [PK1]  [FK]

Location
Primary Key

Status   [PK1]  [FK]

Software Release
Primary Key

Version_Number   [PK1]

Status
Primary Key

Status   [PK1]

owns

consists of

is subject to

creates

currently hasis a

CEC Information Exchange Requirements - Classified SECRET when filled in
1 2 3 4 5 6 7 8 9 10 11

Rationale/UJTL Number Event/Action Information Characterization Sending 
Node

Receiving 
Node

Critical Format Class Latency: SA/Eng 
Support

Message 
Error Rate

Remarks

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Radar measurements to 
support data fusion composite 
tracking

Host CEP Yes Binary IAW IDD Secret xx secs/xx secs xx %
REF: CEC A-spec 
Table 3-3 and 
Host reqmts

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

IFF measurements to support 
data fusion and composite 
tracking

Host CEP Yes Binary IAW IDD Secret xx secs/xx secs xx %

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

IFF interrogation requests to 
support data fusion and 
composite tracking

Host CEP Yes Binary IAW IDD Secret xx secs/xx secs xx %
Respond w hen 
requested 

OP 5.1.1 Comm Op Info Provide SA/Support 
Engagements

ID Changes to support data 
fusion and composite tracking

Host CEP Yes Binary IAW IDD Secret xx secs/xx secs xx %  

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Navigation data to support data 
fusion and composite tracking Host CEP Yes Binary IAW IDD Secret xx secs/xx secs xx %

REF:CEC SRS and 
Host Nav. spec

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Engagement Support Requests 
to support data fusion and 
composite tracking

Host CEP Yes Binary IAW IDD Secret xx secs/xx secs xx % AEGIS only

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Track number management to 
support data fusion and 
composite tracking

Host-CEP CEP-Host Yes Binary IAW IDD Secret xx secs/xx secs xx %
Changes sent 
immediately

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Composite Track State Update 
to support data fusion and 
composite tracking

CEP Host Yes Binary IAW IDD Secret xx secs/xx secs xx %
REF: CEC IDDs for 
each host

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Associated Measurement 
Reports to support data fusion 
and composite tracking

CEP Host Yes Binary IAW IDD Secret xx secs/xx secs xx %
REF: CEC A-spec 
Table 3-3. SPY 
only

OP 5.1.1 Comm Op Info Provide SA/Support 
Engagements

IFF Assignments to support 
data fusion and composite 
tracking

CEP Host Yes Binary IAW IDD Secret xx secs/xx secs xx % When assigned 
or changed

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

ID recommendations to 
support data fusion and 
composite tracking 

CEP Host Yes Binary IAW IDD Secret xx secs/xx secs xx %
When assigned 
or changed

OP 5.1.1 Comm Op Info
Provide SA/Support 
Engagements

Sensor cues to support data 
fusion and composite tracking CEP Host Yes Binary IAW IDD Secret xx secs/xx secs xx %

REF: CEC A-spec 
Table 3-3. SPY 
only

Correlating Tracks

On entry / match state vectors
Do / corr state vectors
Do / corr LPE
Do / corr PIP
Do / corr RCS
Do / corr CID
On exit / corr BMDS Track #

corr fail / is new BMDS Track
corr success / is corr BMDS Track

Receiving Network Track File
Data

On entry / receive file data
Do / store track data
On exit / request matching data

Receiving BMDS Track File
Data

On entry / receive file data
Do / store track data

Idle

Session Activated

BMDS Track File Request Sent ( Request
) / Pull BMDS Track Files

Network Track File Received ( File Data ) [ number tracks
> 0 ] / Input Network Track

Correlation Complete ( Correlation
Results ) [ set not null ] / Send Results

BMDS Track File Data
Received ( File Data ) /

Correlate Tracks

/ initialize

Track Management Module Correlation Module HICTrack FileNetwork Interface
Module

Verify CID,
Correlation, and

Assoicated Track
Data

Request
Possible

BMDS Track
File Matches

Monitor
Correlation

Process

Correlate Tracks

Attempt to
Correlate with
BMDS Track

Send BMDS
Track Data to

JDN

Create New
BMDS Track

Send Track
File Data

Update Track
File Data

Track Management Module Correlation Module HICTrack FileNetwork Interface
Module

Correlation
Possible

Network Track MSG

Prepared Track MSG

Track MSG Data

BMDS Track Data

BMDS Track Display

BMDS Track Data

no

yes

Correlation Results

Track Data

BMDS Track Data

Track File Request

Track DataTrack Data

Data Processing
Terminal
Hardware

Data Processing
Terminal
Hardware

TCIM

Voice Comm
Hardware includes

MSE

Voice Comm
Hardware includes

MSE

Operator Interface
Hardware

Operator Interface
Hardware

Force Level
Control System

Force Level
Control System

Power Generation
and Distribution

Power Generation
and Distribution

EPLRS or SINGARS
Terminal

EPLRS or SINGARS
Terminal

JTIDS
Terminal

JTIDS
Terminal

TCIM

PLGR (GPS)

PLGR
(GPS)

Software

Software

A2C2 Subsystem

ABMOC Subsystem

Power

Power

Power

Power

Power

Power

Power

Voice & TADIL-B Data

Power

Power

Power

Power

Power

Power
Power

Voice & TADIL-B Data

FAAD C3I

AMDPCS

Patriot ICC

MCE (CRC)AWACS

MCE (CRC)

MCE (CRC)

LINK 16
LINK 16

LINK 16
LINK 16

<<entity>>
Network Track

owning element
Received Date-Time
local track number

receive ()
store ()
update ()
send ()

<<interface>>
Network Interface Module

buffer capacity
/msg data

receive msg ()
parse msg ()
route msg data ()
build msg ()
send msg ()

Correlation Module

algorithm
/tracks to be correlated
correlation data
decorrelation data

correlate tracks ()
decorrelate tracks ()
retrieve track data ()
send track data ()

Track Mangement Module

/current tracks
/associated track data
/CID data

assign CID ()
recommend CID ()
retrieve track file data ()
display track file data ()

<<entity>>
Track File

Track Number
CID
/State Vector
/Date-Time

send track data ()

<<entity>>
BMDS Track

/associated data
/history

create ()
update ()
destroy ()
retrieve ()

HIC

JDN

manages

0..*

1..*

interface for

1

1..*

correlates

0..*

1

communicates with

1

1

uses 1..*

1..*

received from

1

0..*

<<derived>>
traces to

11

Receive Network
Track File

13

Manage BMDS
Track File Data

12

Correlate Track
Files

Track Mangement S/W Module

Network
Interface S/W

Correlation S/W
Module

Correlated Track

Network Plan

Network
Track Data

CID Criteria

Network Track Data

JDN

HIC

BMDS Track

AMDPCS

FAAD C3I

ACDS (CVN)

DDG-51 AEGIS Destroyer

F-15C

AWACS F/A-18

MCE

TAOM

RIVET JOINT

CG

Patriot ICC

E-2C

SIAP Operational Models

System Models

Component Models

Presenter
Presentation Notes
Views can automatically generated and permit manipulation of the model by interacting with the view.
Operational behavior can be examined by ‘executing’ the model.
Future product improvement iterations can be ‘jump-started’ using existing models based on actual production and configuration data.






If all goes well, a OMG’s SE modeling language might provide a standardized foundation that we can build mission capability analyses on top of.

A few of the more interesting scenario’s related to this vision are:
The projection of architecture views from system models based on popular representation templates.
Continuous or iterative evaluation using the user’s favorite tool and perhaps executable models to support simulations. 
Generation of architectures for legacy systems from product and configuration data to support evolutionary acquisition.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 11

Stakeholders Involved 
in System Acquisition

TestersTesters

Developers/Developers/
IntegratorsIntegrators

VendorsVendors

RegulatorsRegulators

CustomersCustomers

Project Project 
ManagersManagers

Modeling Needed to Improve CommunicationsModeling Needed to Improve Communications



4/15/2008 Copyright © 2006-2008 by Object Management Group. 12

What is SysML?

• A graphical modelling language in response to the UML for 
Systems Engineering RFP developed by the OMG, INCOSE, and 
AP233
– a UML Profile that represents a subset of UML 2 with 

extensions 

• Supports the specification, analysis, design, verification, and 
validation of systems that include hardware, software, data, 
personnel, procedures, and facilities

• Supports model and data interchange via XML Metadata 
Interchange (XMI®) and the evolving AP233 standard (in-process)

SysML is Critical Enabler for Model Driven SE SysML is Critical Enabler for Model Driven SE 



4/15/2008 Copyright © 2006-2008 by Object Management Group. 13

What is SysML (cont.)

• Is a visual modeling language that provides
– Semantics = meaning
– Notation = representation of meaning

• Is not a methodology or a tool
– SysML is methodology and tool independent



4/15/2008 Copyright © 2006-2008 by Object Management Group. 14

UML/SysML Status

• UML V2
– Updated version of UML that offers significant capability for 

systems engineering over previous versions
– Issued in 2005 with on-going minor revisions

• UML for Systems Engineering (SE) RFP
– Established the requirements for a system modeling language
– Issued by the OMG in March 2003

• SysML 
– Industry Response to the UML for SE RFP
– Adopted by OMG in May ’06



Diagram Overview & Language Concepts



4/15/2008 Copyright © 2006-2008 by Object Management Group. 16

Relationship Between SysML and UML

UML 2

UML
reused by

SysML
(UML4SysML)UML

not required
by SysML

(UML -
UML4SysML)

SysML
extensions

to UML
(SysML
Profile)

SysML

SysML Extensions
-Blocks
-Item flows
-Value properties
-Allocations
-Requirements
-Parametrics
-Continuous flows
-…



4/15/2008 Copyright © 2006-2008 by Object Management Group. 17

SysML Diagram Taxonomy

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2



4/15/2008 Copyright © 2006-2008 by Object Management Group. 18

definition use

4 Pillars of SysML – ABS Example

1. Structure 2. Behavior

3. Requirements 4. Parametrics

sd ABS_ActivationSequence [Sequence Diagram]

d1:Traction
Detector

m1:Brake
Modulator

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

interaction
state 
machine

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction
activity/
function

Presenter
Presentation Notes
Structure
e.g., system hierarchies, interconnections
Behavior
e.g., function-based behaviors, state-based behaviors
Properties
e.g.,  parametric models, time variable attributes
Requirements
 e.g., requirements hierarchies, traceability




4/15/2008 Copyright © 2006-2008 by Object Management Group. 19

SysML Diagram Frames
• Each SysML diagram represents a model element
• Each SysML Diagram must have a Diagram Frame
• Diagram context is indicated in the header:

– Diagram kind (act, bdd, ibd, sd, etc.)
– Model element type (package, block, activity, etc.)
– Model element name
– User defined diagram name or view name

• A separate diagram description block is used to indicate if the 
diagram is complete, or has elements elided

«diagram usage»
diagramKind [modelElementType] modelElementName [diagramName]

Header

Contents

Diagram Description

Version:
Description:
Completion status:
Reference:
(User-defined fields)



4/15/2008 Copyright © 2006-2008 by Object Management Group. 20

Structural Diagrams

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2



4/15/2008 Copyright © 2006-2008 by Object Management Group. 21

Package Diagram

• Package diagram is used to organize the model
– Groups model elements into a name space
– Often represented in tool browser
– Supports model configuration management (check-in/out)

• Model can be organized in multiple ways
– By System hierarchy (e.g., enterprise, system, component)
– By diagram kine (e.g., requirements, use cases, behavior)
– Use viewpoints to augment model organization

• Import relationship reduces need for fully qualified 
name (package1::class1)



4/15/2008 Copyright © 2006-2008 by Object Management Group. 22

Package Diagram 
Organizing the Model

By Diagram Type By Hierarchy By IPT

pkg SampleModel [by diagram type]

Behavior

Structure

Requirements

Use Cases

pkg SampleModel [by level]

Enterprise

System

Logical Design

Physical 
Design

EngrAnalysis Verification

pkg SampleModel [by IPT]

Architecture 
Team

Requirements 
Team

IPT A

IPT B

IPT C



4/15/2008 Copyright © 2006-2008 by Object Management Group. 23

Package Diagram - Views

• Viewpoint represents the 
stakeholder perspective

• View conforms to a 
particular viewpoint

– Imports model elements 
from multiple packages

– Can represent a model 
query based on query 
criteria

• View and Viewpoint 
consistent with IEEE 
1471 definitions

pkg SampleModel[by level]

Enterprise

System

Logical Design

Physical 
Design

Verification

«view»
EngrAnalysis

«viewpoint»
stakeholders=”…”
purpose=”…”
constructionRules= ”…”
concerns=”…”
languages=”…”

EngrAnalysisViewpoint

«import»

«import»

«import»

«import»
«conforms»



4/15/2008 Copyright © 2006-2008 by Object Management Group. 24

Blocks are Basic Structural Elements

• Provides a unifying concept to describe the structure of an element or 
system

– System
– Hardware
– Software
– Data
– Procedure
– Facility
– Person

• Multiple standard compartments can describe the block characteristics
– Properties (parts, references, values, ports)
– Operations
– Constraints
– Allocations from/to other model elements (e.g. activities)
– Requirements the block satisfies
– User defined compartments

Compartment
Label

values
DutyCycle: Percentage

allocatedFrom
«activity»Modulate
BrakingForce

«block»
BrakeModulator



4/15/2008 Copyright © 2006-2008 by Object Management Group. 25

Property Types

• Property is a structural feature of a block 
– Part property aka. part (typed by a block)

• Usage of a block in the context of the enclosing (composite) block
• Example - right-front:wheel

– Reference property (typed by a block)
• A part that is not owned by the enclosing block (not composition)
• Example – aggregation of components into logical subsystem

– Value property (typed by value type)
• A quantifiable property with units, dimensions, and probability 

distribution
• Example

– Non-distributed value: tirePressure:psi=30
– Distributed value: «uniform» {min=28,max=32} tirePressure:psi



4/15/2008 Copyright © 2006-2008 by Object Management Group. 26

Using Blocks

• Based on UML Class from UML Composite Structure
– Supports unique features (e.g., flow ports, value properties)

• Block definition diagram describes the relationship 
among blocks (e.g., composition, association, 
specialization)

• Internal block diagram describes the internal structure 
of a block in terms of its properties and connectors

• Behavior can be allocated to blocks

Blocks Used to Specify Hierarchies and InterconnectionBlocks Used to Specify Hierarchies and Interconnection



4/15/2008 Copyright © 2006-2008 by Object Management Group. 27

Block Definition vs. Usage

Definition
– Block is a definition/type
– Captures properties, etc.
– Reused in multiple contexts

Usage
– Part is the usage of a block 

in the context of a 
composing block

– Also known as a role

Block Definition Diagram Internal Block Diagram



4/15/2008 Copyright © 2006-2008 by Object Management Group. 28

Internal Block Diagram (ibd) 
Blocks, Parts, Ports, Connectors & Flows

Enclosing Enclosing 
BlockBlock

ConnectorConnector

PortPort

Item FlowItem Flow

Internal Block Diagram Specifies Interconnection of PartsInternal Block Diagram Specifies Interconnection of Parts

PartPart



4/15/2008 Copyright © 2006-2008 by Object Management Group. 29

Reference Property Explained

•S1 is a reference part*
•Shown in dashed outline box

*Actual name is reference property



4/15/2008 Copyright © 2006-2008 by Object Management Group. 30

SysML Ports

• Specifies interaction points on blocks and parts
– Integrates behavior with structure
– portName:TypeName

• Kinds of ports
– Standard (UML) Port

• Specifies a set of required or provided operations and/or signals
• Typed by a UML interface

– Flow Port
• Specifies what can flow in or out of block/part 
• Typed by a block, value type, or flow specification
• Atomic, non-atomic, and conjugate variations

Standard Port and Flow PortStandard Port and Flow Port
Support Different Interface ConceptsSupport Different Interface Concepts



4/15/2008 Copyright © 2006-2008 by Object Management Group. 31

Port Notation

StandardStandard
PortPort

FlowFlow
PortPort

provided interfaceprovided interface
(provides the operations)(provides the operations)

required interfacerequired interface
(calls the operations)(calls the operations)

item flowitem flow

Flow PortFlow Port

part2:part1:

part1: part2:



4/15/2008 Copyright © 2006-2008 by Object Management Group. 32

Delegation Through Ports

• Delegation can be used to 
preserve encapsulation of 
block (black box vs white box)

• Interactions at outer ports of 
Block1 are delegated to ports 
of child parts

• Ports must match (same kind, 
type, direction, etc.)

• Connectors can cross 
boundary without requiring 
ports at each level of nested 
hierarchy

Child2:

Child1:

ibd [block]Block1[delegation]



4/15/2008 Copyright © 2006-2008 by Object Management Group. 33

Parametrics

• Used to express constraints (equations) between value 
properties
– Provides support for engineering analysis 

(e.g., performance, reliability)
– Facilitates identification of critical performance properties 

• Constraint block captures equations
– Expression language can be formal (e.g., MathML, OCL) or 

informal
– Computational engine is provided by applicable analysis tool and 

not by SysML
• Parametric diagram represents the usage of the constraints in 

an analysis context
– Binding of constraint parameters to value properties of blocks (e.g., 

vehicle mass bound to parameter ‘m’ in F= m ×

 

a)

Parametrics Enable Integration of Engineering Parametrics Enable Integration of Engineering 
Analysis with Design ModelsAnalysis with Design Models



4/15/2008 Copyright © 2006-2008 by Object Management Group. 34

Defining Vehicle Dynamics

Defining Reusable Equations for ParametricsDefining Reusable Equations for Parametrics



4/15/2008 Copyright © 2006-2008 by Object Management Group. 35

Vehicle Dynamics Analysis

Using the Equations in a Parametric Diagram to Using the Equations in a Parametric Diagram to 
Constrain Value PropertiesConstrain Value Properties



4/15/2008 Copyright © 2006-2008 by Object Management Group. 36

Behavioral Diagrams

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block 
Diagram

Block Definition 
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2



4/15/2008 Copyright © 2006-2008 by Object Management Group. 37

Activities

• Activity specifies transformation of inputs to outputs 
through a controlled sequence of actions

• Secondary constructs show responsibilities for the 
activities using activity partitions (i.e., swim lanes)

• SysML extensions to Activities
– Support for continuous flow modeling
– Alignment of activities with Enhanced Functional Flow Block 

Diagram (EFFBD)



4/15/2008 Copyright © 2006-2008 by Object Management Group. 38

Activity Diagram

Activity Diagram Specifies Controlled Sequence of ActionsActivity Diagram Specifies Controlled Sequence of Actions

Activity

ActionInput

Output

Input

Exampleact 

in1

in2

out1

out2

a2
out1

a5 out1
in1

a1
in1

out1

a3

out1

in1

a4

out1

in1

[x>0] [x<=0]

Output



4/15/2008 Copyright © 2006-2008 by Object Management Group. 39

Routing Flows
Initial Node – On execution of parent control token placed 
on outgoing control flows

Activity Final Node – Receipt of a control token terminates parent

Flow Final Node – Sink for control tokens

Fork Node – Duplicates input (control or object) tokens 
from its input flow onto all outgoing flows

Join Node – Waits for an input (control or object) token on all 
input flows and then places them all on the outgoing flow

Decision Node – Waits for an input (control or object) token on its 
input flow and places it on one outgoing flow based on guards

Merge Node – Waits for an input (control or object) token on 
any input flows and then places it on the outgoing flow

Guard expressions can be applied on all flows



4/15/2008 Copyright © 2006-2008 by Object Management Group. 40

Actions Process Flow of 
Control and Data

• Two types of flow 
– Object / Data
– Control

• Unit of flow is called a “token” 
(consumed & produced by actions)

Actions Execution Begins When Tokens Are Available Actions Execution Begins When Tokens Are Available 
on on ““allall”” Control Inputs and Required InputsControl Inputs and Required Inputs

Control Input

Control Output



4/15/2008 Copyright © 2006-2008 by Object Management Group. 41

An Action Can Invoke Another Activity
act Activity

Activity is Invoked When an Action Begins to ExecuteActivity is Invoked When an Action Begins to Execute

Control Input

Control Output

action2

action1

output2

<<optional>>
output1

input2

<<optional>>

input1



4/15/2008 Copyright © 2006-2008 by Object Management Group. 42

Semantics for Activity Invocation
A call behavior action can have 
• 0..* control inputs & outputs
• 0 ..* optional item inputs & outputs
• 0..* required item inputs & outputs
• 0..* streaming (and continuous) item inputs & outputs

Starting an action:
• An action starts when a token is placed on all of its control inputs and all of its required inputs 

(must meet minimum multiplicity of its input pins) and the previous invoked activity has 
completed

• An action invokes an activity when it starts, and passes the tokens from its input pins to the 
input parameter nodes of the invoked activity

During an execution:
• An action continues to accept streaming inputs and produce streaming outputs 

Terminating an action:
• An action terminates when its invoked activity reaches an activity final, or when the action 

receives a control disable, or as a side affect of other behaviors of the parent activity
• The tokens on the output parameter nodes of the activity are placed on the output pins of the 

action and a control token is placed on each of the control outputs of the action

Following action termination:
• The tokens on the output pins and control outputs of the action are moved to the input pins of 

the next actions when they are ready to start per above
• The action can restart and invoke the activity again when the starting conditions are satisfied 

per above

Note: The summary is an approximation of the semantics. 
The detailed semantics are specified in the UML and SysML specification.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 43

Common Actions

Call Operation Action
(can call leaf level function)

Call Behavior Action 

Accept Event Action
(Event Data Pin often elided)

Send Signal Action 
(Pins often elided)

act Activity

action2

action1

output2

<<optional>>
output1

input2

<<optional>>
input1



4/15/2008 Copyright © 2006-2008 by Object Management Group. 44

act Activity

Activity Diagram Example 
With Streaming Inputs and Outputs

Streaming Inputs and Outputs Continue to Be Streaming Inputs and Outputs Continue to Be 
Consumed and Produced  Consumed and Produced  WhileWhile the Action is Executing the Action is Executing 

output2

output3

<<optional>>
output1
{stream}

input2

<<optional>>
input1

{stream}
Activity 2

out1
{stream}in1

{stream}

Activity 3

out1

in1
{stream}

Activity 1

in1
{stream}

«optional»
out1

{stream}
in2

Activity4

out1

Start

«optional»

«optional»

«optional»

[else]

[else]
[x>1]

[y>0]



4/15/2008 Copyright © 2006-2008 by Object Management Group. 45

Distill Water Activity Diagram 
(Continuous Flow Modeling)

Continuous Flow Is RepresentativeContinuous Flow Is Representative
of Many Physical Processesof Many Physical Processes

Interruptible
Region

Continuous Flow
Actions are enabled by default 

when activity is enabled 

Accept Event Action
Will Terminate Execution

Continuous flow means ΔTime 
between tokens approaches zero



4/15/2008 Copyright © 2006-2008 by Object Management Group. 46

Example – Operate Car
act Operate Car

:Monitor Traction

Modulation
Frequency

«controlOperator»
:Enable on Brake
Pressure > 0

Braking Pressure

Turn Key
to Off

:Driving

Brake Pressure
«continuous»

:Braking
Brake Pressure

Modulation
Frequency

«continuous»

«continuous»

«continuous»

«continuous»

{control}

«optional »

Turn Key
to On

Enabling and Disabling ActionsEnabling and Disabling Actions
With Control OperatorsWith Control Operators



4/15/2008 Copyright © 2006-2008 by Object Management Group. 47

Prevent Lockup[Activity] Actionsact [ ]

a1 : Detect Loss of 
Traction

p1 : TractLoss
a2 : Modulate 
Braking Force

p2 : TractLoss

of1

Prevent Lockup[Activity] Actionsact [ ]

a1 : Detect Loss of 
Traction

a2 : Modulate 
Braking Forcetl : 

TractLoss

Activity Diagrams 
Pin vs. Object Node Notation

• Pins are kinds of Object Nodes 
– Used to specify inputs and outputs of actions
– Typed by a block or value type
– Object flows connect object nodes

• Object flows between pins have two diagrammatic 
forms
– Pins shown with object flow between them
– Pins elided and object node shown with flow arrows in and out

Pins ObjectNode

Pins must 
have same 
characteristics 
(name, type 
etc.)



4/15/2008 Copyright © 2006-2008 by Object Management Group. 48

Explicit Allocation of Behavior to 
Structure Using Swimlanes

Activity Diagram
(without Swimlanes)

Activity Diagram
(with Swimlanes)

Prevent Lockup Swimlanes[Activity] act [ ]

allocatedTo
<<connector>> c2 :

<<allocate>>
d1 : Traction Detector

<<allocate>>
m1 : Brake Modulator

a1 : Detect Loss of 
Traction

p1 : TractLoss a2 : Modulate 
Braking Force

p2 : TractLoss

of1

Prevent Lockup[Activity] Actionsact [ ]

a1 : Detect Loss of 
Traction

p1 : TractLoss
a2 : Modulate 
Braking Force

p2 : TractLoss

of1



4/15/2008 Copyright © 2006-2008 by Object Management Group. 49

Activity Decomposition

Definition Use

Prevent Lockup[Activity] Actionsact [ ]

a1 : Detect Loss of 
Traction

p1 : TractLoss
a2 : Modulate 
Braking Force

p2 : TractLoss

of1

Beh avior De comp[Pa ckage] Beh aviorbdd [  ]

<<activity>>
Prevent 
Lockup

<<activity>>
De tect 

Los s of 
Tra ction

<<activity>>
Modulate 
Braking 

Force

<<block>>
Tra ctLoss

a2

p1

a1

p2



4/15/2008 Copyright © 2006-2008 by Object Management Group. 50

SysML EFFBD Profile

Aligning SysML with Classical Systems Engineering TechniquesAligning SysML with Classical Systems Engineering Techniques

EFFBD - Enhanced Functional Flow Block Diagram

External
Input

External
Output

2.1 Serial
Function

2.2 Multi-exit
Function

2.3 Function in
Concurrency

Item 1

2.4 Function in
Multi-exit
Construct

2.5 Function in
an Iterate

[ before third time ]

Item 2

«optional» [ after
third 
time ]

2.6 Output
Function

«optional»

Item 3

Item 4
«optional»

«optional»

{cc#1}

{cc#2}

«effbd»
act



4/15/2008 Copyright © 2006-2008 by Object Management Group. 51

Interactions

• Sequence diagrams provide representations of 
message based behavior 
– represent flow of control
– describe interactions between parts

• Sequence diagrams provide mechanisms 
for representing complex scenarios
– reference sequences
– control logic
– lifeline decomposition

• SysML does not include timing, interaction overview, 
and communications diagram



4/15/2008 Copyright © 2006-2008 by Object Management Group. 52

Black Box Interaction (Drive)
sd DriveBlackBox

par

alt controlSpeed

driver:Driver vehicle: :HybridSUV

[state = (idle)]

[state = (accelerating/cruising)]

[state = (braking)]

ref StartVehicleBlackBox

ref Idle

ref Accelerate/Cruise

ref Brake

ref Steer

ref Park/ShutdownVehicle

UML 2 Sequence Diagram ScalesUML 2 Sequence Diagram Scales
by Supporting Control Logic and Reference Sequencesby Supporting Control Logic and Reference Sequences



4/15/2008 Copyright © 2006-2008 by Object Management Group. 53

Black Box Sequence (StartVehicle)

Simple Black Box InteractionSimple Black Box Interaction

References Lifeline 
Decomposition
For White Box 

Interaction

sd StartVehicleBlackBox

driver:Driver
vehicle:HybridSUV

ref StartVehicleWhiteBox

1: StartVehicle

turnIgnitionToStart



4/15/2008 Copyright © 2006-2008 by Object Management Group. 54

White Box Sequence (StartVehicle)

Decomposition of Black Box Into White Box InteractionDecomposition of Black Box Into White Box Interaction

sd StartVehicleWhiteBox

ecu:PowerControlUnit epc:ElectricalPowerController

1.1: Enable

1: StartVehicle

1.2:ready



4/15/2008 Copyright © 2006-2008 by Object Management Group. 55

Primary Interaction Operators
• ref name

– reference to a sequence diagram fragment defined elsewhere
• opt [condition]

– has 1 part that may be executed based on a condition/state value
• alt

– has 2 or more parts, but only one executes based on a condition/state 
– an operand fragment labeled [else] is executed if no other condition is true

• par
– has 2 or more parts that execute concurrently

• Concurrence indicates does not require simultaneous, just that the order 
is undetermined. If there is only one processor the behavior could be (A 
then B),  (B then A), or (A and B interleaving) …

• loop min..max [escape]
– Has a minimum # of executions, and optional maximum # of executions, and 

optional escape condition
• break [condition]

– Has an optional guard. If true, the contents (if any) are executed, and the 
remainder of the enclosing operator is not executed

Provided by Michael Chonoles



4/15/2008 Copyright © 2006-2008 by Object Management Group. 56

Other Interaction Operators

• critical
– The sequence diagram fragment is a critical region. It is treated as atomic – 

no interleaving with parallel regions
• neg

– The sequence diagram fragment is forbidden. Either it is impossible to 
occur, or it is the intent of the requirements to prevent it from occurring

• assert
– The sequence diagram fragment is the only one possible (or legal)

• seq (weak, the default) 
strict

– Strict: The message exchange occurs in the order described
– Weak: Each lifeline may see different orders for the exchange (subject to 

causality) 
• consider (list of messages) 

ignore (list of messages)
– Consider: List the messages that are relevant in this sequence fragment
– Ignored:   List the messages that may arrive, but are not interesting here

Provided by Michael Chonoles



4/15/2008 Copyright © 2006-2008 by Object Management Group. 57

Trial Result of Vehicle Dynamics

Typical Example of a Timing DiagramTypical Example of a Timing Diagram

Lifeline are
value properties

Timing Diagram Not 
Part of SysML

timMaxAcceleration [100 Wheel Horsepower]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

Time (sec)

A
cc

el
le

ra
tio

n
(g

)

0

20

40

60

80

100

120

140

0 5 10 15 20

Time (sec)

Ve
lo

ci
ty

 (m
ph

)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20

Time (sec)

D
is

ta
nc

e 
(ft

)

Satisfies
«requirement»Acceleration

«diagramDescription»
version=”0.1"
description=”Constant
100 wheel horsepower,
4000 lb vehicle weight,
simple drag"
reference=”Equations of
Motion”
completeness=”assumes
perfect tire traction”



4/15/2008 Copyright © 2006-2008 by Object Management Group. 58

State Machines

• Typically used to represent the life cycle of a block
• Support event-based behavior (generally 

asynchronous)
– Transition with trigger, guard, action
– State with entry, exit, and do-activity
– Can include nested sequential or concurrent states
– Can send/receive signals to communicate between blocks 

during state transitions, etc.

• Event types
– Change event
– Time event
– Signal event



4/15/2008 Copyright © 2006-2008 by Object Management Group. 59

stm HSUVOperationalStates

Operate

Idle

Accelerating/
Cruising Braking

engageBrake/

accelerate/

when (speed = 0)

releaseBrake/

shutOff/stop engine

Off

start[in neutral]/start engine Nominal 
states only

keyOff/

Operational States (Drive)

Transition notation: 
trigger[guard]/action 



4/15/2008 Copyright © 2006-2008 by Object Management Group. 60

Use Cases

• Provide means for describing basic functionality in 
terms of usages/goals of the system by actors
– Use is methodology dependent
– Often accompanied by use case descriptions

• Common functionality can be factored out via 
«include» and «extend» relationships

• Elaborated via other behavioral representations to 
describe detailed scenarios

• No change to UML



4/15/2008 Copyright © 2006-2008 by Object Management Group. 61

Operational Use Cases

uc HSUV_UseCases [Operational Use Cases]

HybridSUV

Driver

Accelerate Drive_The_Vehi
cle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Flat_Tire



4/15/2008 Copyright © 2006-2008 by Object Management Group. 62

Cross-cutting Constructs
• Allocations
• Requirements

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2



4/15/2008 Copyright © 2006-2008 by Object Management Group. 63

Allocations

• Represent general relationships that map one model 
element to another

• Different types of allocation are:
– Behavioral (i.e., function to component)
– Structural (i.e., logical to physical)
– Software to Hardware
– ….

• Explicit allocation of activities to structure via swim 
lanes (i.e., activity partitions)

• Both graphical and tabular representations are 
specified



4/15/2008 Copyright © 2006-2008 by Object Management Group. 64

Different Allocation Representations 
(Tabular Representation Not Shown)

Explicit Allocation of
Action to Part Property

Allocate Relationship

Callout NotationCompartment Notation

«block»
Block Name

allocatedFrom
«elementType»ElementName

part name

Element
Name1

Element
Name3

Element
Name2

«allocate»

«allocate»

Read as follows: “part name has constraints that are allocated to/from an <<element type>> Element Name”

«allocate»
part name : Element Name

action name : 
Activity Name

«block»
Block Name

part name

allocatedFrom
«elementType»Element Name



4/15/2008 Copyright © 2006-2008 by Object Management Group. 65

SysML Allocation of SW to HW

• In UML, the deployment diagram is used to deploy artifacts to nodes 
• In SysML, «allocation» on an ibd and bdd is used to deploy software/data to 

hardware
ibd [node] SF Residence

«node»
SF Residence Installation

«hardware»
: Site Processor

allocatedFrom
«software» Device Mgr
«software» Event Mgr
«software» Site Config Mgr
«software» Site RDBMS
«software» Site Status Mgr
«software» User I/F
«software» User Valid Mgr

«hardware»
*

: Optical Sensor

«hardware»
: DSL Modem

«hardware»
2

: DVD-ROM Drive

allocatedFrom
«data» Video File

«hardware»
: User Console

«hardware»
2

: Video Camera
«hardware»

: Alarm

«hardware»
: NW Hub

allocatedFrom
«software» SF Comm I/F

«hardware»
: Site Hard Disk

allocatedFrom
«data» Site Database



4/15/2008 Copyright © 2006-2008 by Object Management Group. 66

Requirements

• The «requirement» stereotype represents a text 
based requirement
– Includes id and text properties
– Can add user defined properties such as verification method
– Can add user defined requirements categories 

(e.g., functional, interface, performance)

• Requirements hierarchy describes requirements 
contained in a specification

• Requirements relationships include DeriveReqt, 
Satisfy, Verify, Refine, Trace, Copy



4/15/2008 Copyright © 2006-2008 by Object Management Group. 67

Requirements Breakdown

Requirement Relationships Model the Content of a SpecificationRequirement Relationships Model the Content of a Specification

req [package] HSUVRequirements [HSUV Specification]

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
Acceleration

Id = “R1.2.1”
text = “The vehicle shall meet Ultra-Low 
Emissions Vehicle standards.”

«requirement»
Emissions

HSUVSpecification

«requirement»
Power

RefinedBy
«useCase» HSUVUseCases::Accelerate

SatisfiedBy
«block» PowerSubsystem

VerifiedBy
«testCase» MaxAcceleration

«deriveReqt»



4/15/2008 Copyright © 2006-2008 by Object Management Group. 68

Example of Derive/Satisfy Requirement 
Dependencies

Client

Supplier

Client

Supplier

Arrow Direction Opposite Typical Requirements FlowArrow Direction Opposite Typical Requirements Flow--DownDown

Client depends on supplier 
(i.e., a change in supplier 
results in a change in client)

«requirement»
Acceleration

«requirement»
CargoCapacity

«requirement»
OffRoadCapability

«deriveReqt»

«block»
PowerSubsystem

«satisfy»

«requirement» 
PowerPower

«deriveReqt» «deriveReqt»

from OMG

from OMG



4/15/2008 Copyright © 2006-2008 by Object Management Group. 69

Problem and Rationale

Problem and Rationale can be attached to any Problem and Rationale can be attached to any 
Model Element to Capture Issues and DecisionsModel Element to Capture Issues and Decisions

bdd Master Cylinder requirements

«requirement»
Loss of Fluid

«requirement»
Reservoir

«block»
Brake System

m:MasterCylinder

«satisfy»

«satisfy»

«rationale»
The best-practice solution consists in
assigning one reservoir per brakeline.
See "automotive_d32_hdb.doc"

«problem»
The master cylinder in previous
version leaked.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 70

Stereotypes & Model Libraries

• Mechanisms for further customizing SysML
• Profiles represent extensions to the language

– Stereotypes extend meta-classes with properties and 
constraints

• Stereotype properties capture metadata about the model element
– Profile is applied to user model
– Profile can also restrict the subset of the meta-model used 

when the profile is applied

• Model Libraries represent reusable libraries of model 
elements



4/15/2008 Copyright © 2006-2008 by Object Management Group. 71

Stereotypes

Defining the Stereotype Applying the Stereotype

«metaclass»
NamedElement

«stereotype»
ConfigurationItem
author: String
version: String
lastChanged: Date

«configurationItem»
Engine

author=”John Doe”
version=”1.2"
lastChanged=Dec12, 2005



4/15/2008 Copyright © 2006-2008 by Object Management Group. 72

Applying a Profile and 
Importing a Model Library

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}



4/15/2008 Copyright © 2006-2008 by Object Management Group. 73

Cross Connecting Model Elements

1. Structure 2. Behavior

3. Requirements 4. Parametrics

allocate

satisfy

value 
binding

Verify 

Presenter
Presentation Notes
4 types of cross-connecting principles:
Allocation
Requirement satisfaction/derivation
Value Binding/Parametrics
Requirement Verification



SysML Modeling 
as Part of the SE Process



Distiller Sample Problem



4/15/2008 Copyright © 2006-2008 by Object Management Group. 76

Distiller Problem Statement

• The following problem was posed to the SysMLteam in Dec ’05 by D. Oliver:
• Describe a system for purifying dirty water. 

– Heat dirty water and condense steam are performed by a Counter Flow Heat Exchanger
– Boil dirty water is performed by a Boiler  
– Drain residue is performed by a Drain
– The water has properties: vol = 1 liter, density 1 gm/cm3, temp 20 deg C, specific heat 

1cal/gm deg C, heat of vaporization 540 cal/gm.
• A crude behavior diagram is shown.

Dirty water
@ 20 deg C

Heat  Dirty water
To 100 deg C

Heat to Dirty
water

Boil Dirty water

Dirty water
@ 100 deg C Steam

Residue

and

Condense
steam

Drain
Residue

Pure
water

Disposed
residue

andand

Heat to Boil
water

Energy to
condense

What are the real requirements? 
How do we design the system?

Presenter
Presentation Notes
Problem statements come in many different forms.  The systems engineer is often presented with informal diagrams and text for the initial concept requirements, and is asked to formalize them into a specification.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 77

Distiller Types

Batch
Distiller

Continuous
Distiller

Note: Not all aspects of the distiller are modeled in the example



4/15/2008 Copyright © 2006-2008 by Object Management Group. 78

Distiller Problem – Process Used

• Organize the model, identify libraries needed
• List requirements and assumptions
• Model behavior 

– In similar form to problem statement
– Elaborate as necessary

• Model structure 
– Capture implied inputs and outputs

• segregate I/O from behavioral flows
– Allocate behavior onto structure, flow onto I/O

• Capture and evaluate parametric constraints
– Heat balance equation

• Modify design as required to meet constraints
• Model the user interaction
• Modify design to reflect user interaction



4/15/2008 Copyright © 2006-2008 by Object Management Group. 79

Distiller Problem – Package Diagram: 
Model Structure and Libraries

Presenter
Presentation Notes
This diagram shows the structure used to build the distiller model, and emphasizes the units used.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 80

Distiller Example Requirements Diagram

Presenter
Presentation Notes
This diagram shows the Distiller Specification (including some rationale for why a distiller is an appropriate way to purify water), and a formal documentation for related assumptions, which are treated as requirements in this example.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 81

Distiller Example: 
Requirements Tables

table [requirement] OriginalStatement[Decomposition of OriginalStatement]

id name text
S0.0 OriginalStatement Describe a system for purifying dirty water. …
S1.0 PurifyWater The system shall purify dirty water.
S2.0 HeatExchanger Heat dirty water and condense steam are performed by a …
S3.0 Boiler Boil dirty water is performed by a Boiler. 
S4.0 Drain Drain residue is performed by a Drain.
S5.0 WaterProperties water has properties:  density 1 gm/cm3, temp 20 deg C, …
S5.1 WaterInitialTemp water has an initial temp 20 deg C

table [requirement] PurifyWater[Requirements Tree]

id name relation id name Rationale

S1.0 PurifyWater deriveReqt D1.0 DistillWater
The requirement for a boiling function and a boiler 
implies that the water must be purified by distillation

Presenter
Presentation Notes
Tables will be used more often than requirements diagrams, because they are more compact and more scaleable.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 82

Dirty water
@ 20 deg C

Heat  Dirty water
To 100 deg C

Heat to Dirty
water

Boil Dirty water

Dirty water
@ 100 deg C Steam

Residue

and

Condense
steam

Drain
Residue

Pure
water

Disposed
residue

andand

Heat to Boil
water

Energy to
condense

Distiller Example – Activity Diagram: 
Initial Diagram for DistillWater

• This activity diagram applies the SysML EFFBD profile, and formalizes the 
diagram in the problem statement.

Actions (Functions) Control (Sequence) Things that flow (ObjectNodes)

Presenter
Presentation Notes
This activity diagram follows the optional SysML EFFBD profile, and formalizes the diagram in the problem statement.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 83

Distiller Example – Activity Diagram: 
Control-Driven: Serial Behavior

Batch
Distiller

Continuous Distiller Here

«effbd»
act [activity] DistillWater [Simple Starting Point)

coldDirty:H2O
[liquid]

hotDirty:H2O
[liquid]

steam:H2O
[gas]

pure:H2O
[liquid]

predischarge :Residue

discharge :Residueexternal:Heat

recovered:Heat

a3:CondenseSteam

a1:HeatWater a2:BoilWater

a4:DrainResidue



4/15/2008 Copyright © 2006-2008 by Object Management Group. 84

Distiller Example – Block Definition 
Diagram: DistillerBehavior

Control
(not shown 

on BDD)

Need to 
consider 
phases 
of H2 0

Activities 
(Functions)

Things that flow (ObjectNodes)

Presenter
Presentation Notes
This block definition diagram defines all the elements used in the activity diagram.  This allows some elaboration of properties of the water that flows through the system.  This shows the need to consider the water in both liquid and gaseous phase… the next diagram will formalize these phases in a finite state machine.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 85

Distiller Example – State Machine 
Diagram: States of H2O

TransitionsStates



4/15/2008 Copyright © 2006-2008 by Object Management Group. 86

Distiller Example – Activity Diagram: 
I/O Driven: Continuous Parallel Behavior

Continuous
DistillerBatch Distiller Here

Presenter
Presentation Notes
It makes sense for the distiller design to allow a continuous flow of water through the system, rather than only discrete increments of water. The previous activity diagram (EFFBD) has been recast to support continuous flow. Dirty H2O and Heat are inputs to the system, Pure H2O and Residue are outputs.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 87

Distiller Example – Activity Diagram: 
No Control Flow, ActionPin Notation, 

Simultaneous Behavior

Presenter
Presentation Notes
This diagram is semantically equivalent to the previous diagram, but clearer and easier to read.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 88

Distiller Example – Activity Diagram 
(with Swimlanes): DistillWater

Parts

Allocated ibd

Presenter
Presentation Notes
The previous Activity Diagram has been elaborated with AllocateActivityPartitions, showing how activities are allocated to blocks.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 89

Distiller Example – Block Definition 
Diagram: DistillerStructure

Presenter
Presentation Notes
The problem statement includes the initial product structure (Counter Flow Heat Exchanger, Boiler, Drain), which are defined in this Block Definition Diagram.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 90

distiller breakdown (ports)Initial Distiller Structurepkg [  ]

<<block>>
Heat Exchanger

{h out.temp<=120,
c in.temp<=60,
h in.temp<=120,
c out.temp<=90}

c in : Fluid

c out : Fluid

h in : Fluid

h out : Fluid

<<block>>
Boiler

bottom : Fluid bottom : Heat

middle : Fluid top : Fluid

<<block>>
Distiller

<<block>>
Valve

in : Fluid out : Fluid

condenser drainevaporator

constraints

Distiller Example – Block Definition 
Diagram: Heat Exchanger Flow Ports

Flow Ports
(typed by things that flow)

Constraints
(on Ports)

bdd



4/15/2008 Copyright © 2006-2008 by Object Management Group. 91

Distiller Example – Internal Block 
Diagram: Distiller Initial Design

ibd

Presenter
Presentation Notes
This internal block diagram now shows how the parts are connected in the distiller system.  These flows are notional, and provide the initial basis for interface specifications – note that they merely indicate direction of flow for each input/output… they don’t directly relate to the activity model yet.  These flows will later be referenced in a parametric heat balance analysis.

The flow ports can start to place restrictions on pressure, temperature, etc., which will be necessary to manufacture or procure these parts.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 92

Distiller Example –Table: 
Functional Allocation

Exercise for student:
Is allocation complete?
Where is “«objectFlow»of8”?Swimlane Diagram

O
bj

ec
t F

lo
w

:o
f1

[.
..

O
bj

ec
t F

lo
w

:o
f2

[.
..

O
bj

ec
t F

lo
w

:o
f3

[.
..

O
bj

ec
t F

lo
w

:o
f4

[.
..

O
bj

ec
t F

lo
w

:o
f5

[.
..

O
bj

ec
t F

lo
w

:o
f6

[.
..

O
bj

ec
t F

lo
w

:o
f7

[.
..

-a
1 

: 
D

is
til

le
r:

:D
is

...

-a
2 

: 
D

is
til

le
r:

:D
is

...

-a
3 

: 
D

is
til

le
r:

:D
is

...

-a
4 

: 
D

is
til

le
r:

:D
is

...

Initial Distiller Structure [Distill...

Distiller [Distiller::Distiller St...

-condenser : Distiller::D...Distiller::D...Distiller::D...

-drain : Distiller::Distiller...Distiller::Distiller...Distiller::Distiller...

-evaporator : Distiller::...Distiller::...Distiller::...

-main1 : Distiller::Item ...Distiller::Item ...Distiller::Item ...

-main2 : Distiller::Item ...Distiller::Item ...Distiller::Item ...

-main3 : Distiller::Item ...Distiller::Item ...Distiller::Item ...

-main4 : Distiller::Item ...Distiller::Item ...Distiller::Item ...

-q1 : Distiller::Item Typ...Distiller::Item Typ...Distiller::Item Typ...

-sludge1 : Distiller::Ite...Distiller::Ite...Distiller::Ite...

-sludge2 : Distiller::Ite...Distiller::Ite...Distiller::Ite...

Presenter
Presentation Notes
This internal block diagram is now annotated with allocations from the previous “swimlane” diagram, accounting for flow allocation.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 93

Parametric Diagram: Heat Balance

Presenter
Presentation Notes
This parametric diagram helps the systems engineer to visualize the heat balance of an isobaric (constant pressure) distiller system.  This is an appropriate first-order approximation of the heat flow required to make the distiller function properly.  The values referenced relate to the flows shown on the system internal block diagram.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 94

Distiller Example – Heat Balance 
Results

table IsobaricHeatBalance1 [Results of Isobaric Heat Balance]

specific heat cal/gm-°C 1
latent heat cal/cm 540

m
ai

n1
 : 

H
2O

m
ai

n3
 : 

H
2O

 

m
ai

n4
 : 

H
2O

 

mass flow rate gm/sec 6.8 6.8 1 1 1
temp °C 20 100 100 100 100

dQ/dt cooling water cal/sec 540
dQ/dt steam-condensate cal/sec 540
condenser efficency 1
heat deficit 0

dQ/dt condensate-steam cal/sec 540
boiler efficiency 1
dQ/dt in boiler cal/sec 540

m
ai

n2
 : 

H
2O

 fr
m

co
nd

en
se

r

m
ai

n2
 : 

H
2O

 in
to

 e
va

p

Note: Cooling water 
needs to have 6.75x 
flow of steam!  
Need bypass between 
hx_water_out and 
bx_water_in!

Satisfies «requirement»
WaterSpecificHeat

Satisfies «requirement»
WaterHeatOfVaporization

Satisfies «requirement»
WaterInitialTemp 1. Set these 

(steady 
state)

2. Solve for 
these

Presenter
Presentation Notes
This table was generated using the equations stated in the parametric diagram.  It is important to note that, in order to get the heat equations to balance, that 6.75 times more water than steam is required to flow through the heat exchanger.  The design shown on the previous internal block diagram doesn’t allow this, so a modification must be made to the design in order to allow a bypass between the heat exchanger and the boiler.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 95

Distiller Example – Activity Diagram: 
Updated DistillWater

Presenter
Presentation Notes
The “ReturnSome” activity has been allocated to the HeatExchanger, “hotDirty:H2O” to the boiler has been updated to “hotDirty1:H2O”, and “hotDirty2:H2O” is now an additional output.  hotDirty = hotDirty1+hotDirty2. 



4/15/2008 Copyright © 2006-2008 by Object Management Group. 96

Distiller Example – Internal Block 
Diagram: Updated Distiller

ibd

Presenter
Presentation Notes
An additional port must be added to the HeatExchanger, allowing waste_water to flow out of the system.  Note that the functional and flow allocations have been updated.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 97

Distiller Example – Use Case and 
Sequence Diagrams

Operational Sequence simple seqence[Interaction] sd [  ]

[while state=Operating]

[state=draining residue]

[level=high]

[level=low]

alt

loop

 : Operator <<block>>
 : Distiller

Turn On1: 

Turn Off7: 

Power Lamp On2: 

High Level Lamp On4: 

Low Level Lamp On5: 

Draining Lamp On6: 

Operating Lamp On3: 

Power Lamp Off8: 

[while state=Operating]

[state=draining residue]

[level=high]

[level=low]

alt

loop

Distiller Use Cases use case example[Package] uc [  ]

Distiller

Operate Distiller
Operator



4/15/2008 Copyright © 2006-2008 by Object Management Group. 98

Distiller Example – Internal Block 
Diagram: Distiller Controller

block diagram revised & elaboratedDistillerclass [  ]

pwr in : Elec Power

heat & valve : Controller
pwr : Elec Power

b : Boiler Signals v1 : V Ctrlv2 : V Ctrl bp : Elec Power

diverter assembly

condenser : Heat Exchanger evaporator : Boiler

p in : Elec Powerc : Boiler Signals

drain : Valve

v : V Ctrl

user : Control Panel

splitter : Tee Fitting

feed : Valve

v : V Ctrl

main4 : H2O

m2.2 : H2O

distiller pwr : Elec Power

feed ctl : V Ctrl

htr pwr : Elec Power

drain ctl : V Ctrl

blr status : Blr Sig

blr ctl : Blr Sig

main2 : H2O sludge1 : Residue

main3 : H2O

sludge2 : Residuemain1 : H2O

m2.1 : H2O

m2.1 : H2O

iPanel iPanel

ibd



4/15/2008 Copyright © 2006-2008 by Object Management Group. 99

Distiller Example – State Machine 
Diagram: Distiller Controller

Controller State Machine simple diagramstm [  ]

Operating
bx heater ondo / 

Level High
open drain : Valvedo / 

Level Low
open feed : Valvedo / 

Level OK
shut all Valvesdo / 

Building Up Residue
close drain : Valvedo / 

Purging Residue
open drain : Valvedo / 

Cooling Off
bx1 heater OFFentry / 

open feed : Valve, open drain : Valvedo / 

Filling
open feed : Valvedo / Draining

open drain : Valvedo / 

Warming Up
bx1 heater ondo / 

 [bx1 level high]

 [NOT bx1 level high]

 [bx1 level low]

 [NOT bx1 level low]

 [residue timer]
 [drain timer]

 [bx level low] [power = on]

 [shutdown command] [bx1 temp = 100]

 [NOT  bx1 level low]
 [bx1 temp = 30]

Off
Power Light Offdo / 



OOSEM – ESS Example



4/15/2008 Copyright © 2006-2008 by Object Management Group. 101

System Development Process

System
Modeling
Activities

Integrated Product 
Development (IPD) is 
essential to improve 

communications

A Recursive V process 
that can be applied to 
multiple levels of the 

system hierarchy

Component
Modeling
Activities

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006

Procedures

Manage
System

Development

Define System
Reqt's &
Design

Integrate
& Test
System

System

Stakeholder
Reqts

System arch
Allocated reqt's

Data
Hardware

Software
Develop
System

Components

Verified
System

Component

Plan

Status
Technical data Test procedures



4/15/2008 Copyright © 2006-2008 by Object Management Group. 102

System Modeling Activities – OOSEM 
Integrating MBSE into the SE Process

Synthesize 
Physical 

Architecture

Define
System

Requirements

Define 
Logical 

ArchitectureOptimize &
Evaluate 

Alternatives

Validate & 
Verify 
System

Analyze
Needs

•Engr Analysis Models
•Trade studies

•Test cases/procedures

•Mission use cases/scenarios
•Enterprise model

•System use cases/scenarios
•Elaborated context
•Req’ts diagram

•Logical architecture

•Node diagram
•HW, SW, Data architecture

Requirements Traceability is  Managed
Through the Entire MBSE Process

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006

Presenter
Presentation Notes
Use ISSEP chart for Design and Verify System activity.
Note: Mention IPT.
Try to show SE and software on same page
-- Highlight differences.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 103

Enhanced Security System Example

• The Enhanced Security System is the example for 
the OOSEM material
– Problem fragments used to demonstrate principles
– Utilizes Artisan RTS™ Tool for the SysML artifacts

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 104

ESS System Models

ESS Enterprise Models

ESS Logical Design Models

ESS Allocated Design
Models

«document»
Market Needs

«requirement»

id# = SS1

ESS System Specification

«requirement»

id# = LR1

ESS Logical Requirements

«requirement»

id# = AR1

ESS Allocated Requirements

«requirement»

id# = SS102
txt = System shall
detect intruder entry
and exit ...

IntruderDetection «requirement»

id# = SS111

R111

«trace»

«deriveReqt»

«deriveReqt»

«refine»

«refine»

«refine»

«trace»

«satisfy»

«satisfy»

«satisfy»

satisfiedBy
Entry/Exit Subsystem
verifiedBy
Entry/Exit Detection Test

req [package] ESS Requirements Flowdown

ESS Requirements Flowdown

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 105

Central Monitoring Station As-Is

Police

Residence

Dispatcher Intruder

Comm Network

bdd [package] Enterprise (As Is)

Operational View Depiction

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 106

ESS Enterprise As-Is Model

Domain
As-Is

Residence

«system»
Sec Sys

«external»
Comm Network

«external»
Emergency Services As-Is

«enterprise»
Enterprise As-Is

IntruderCustomer As-Is

Site Installation
As-Is

Central Monitoring
Station As-Is

Dispatcher Police

*

**

1

1

bdd [package] ESS Enterprise (As Is)

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 107

Domain
To-Be

«enterprise»
ESS Operational Enterprise

«moe» OperationalAvailability = {>.99}
«moe» MissionResponseTime = {<5 min}
«moe» OperationalCost = {TBD}
«moe» CostEffectiveness
MonitorSite ()
DispatchEmergencyServices ()
ProvideEmergencyResponse ()Protected Site

Intruder

Customer

«external»
Physical Environment

«external»
Property

«external»
Single-family Residence «external»

Multi-family Residence

«external»
Business

«system»
ESS

«external»
Comm Network

«external»
Emergency Services

Assess Report ()
Report Update ()
Dispatch Police ()

Dispatcher

Responder

Fire
Police

Paramedic

*

1..* 1..*

*

*

*

*

*
*

bdd [package] ESS Enterprise (To Be)

ESS Operational Enterprise To-Be 
Model

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 108

Operate

Monitor Site
Respond

Activate/Dea-
ctivate

Respond to
Break-In

Respond to
Fire

Respond to
Medical

«include»

«include» «extend»

uc [package] System Use Cases

System Use Cases - Operate

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 109

act Monitor Site (break in)

Intruder

Enter Property

Conduct Theft

Exit Property

«actor»
ESS

Status Update

DetectEntry

ValidateEntry

GenerateAlarm ReportEntry

InternalMonitor

DetectExit

ReportExit

«system»
Emergency Services

Assess Report

Report Update Dispatch Police

«external»

Validated Entry

[Alert]

[Alert]

[Alert]

System On

System Off

System Scenario: Activity Diagram 
Monitor Site (Break-In)

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 110

«system»
: ESS

«perf» Power = {<100 watts}
«perf» Reliability
«phys» SiteInstallDwg
«store» EventLog
«store» SystemState
DetectEntry ()
DetectExit ()
ReportEntry ()
ReportExit ()
GenerateAlarm ()
ValidateEntry ()
InternalMonitor ()
DetectFire ()
DetectMedicalEmergency ()
RequestUserID ()
ValidateUserID ()
SetTimer ()
ActivateSystem ()
ProtectPrivacy ()
Status Update ()
DetectFault ()«external»

: Physical Environment

«external»
: Property

«external»
: Emergency Services

: Customer

: Intruder

 : EmergencyServicesIn

 : EmergencyServicesOut

 : CustomerIn : CustomerOut

 : IntruderSignal : AlarmSignal

 : Power  : Door Input  : Window Input

 : Envronmental_In

ibd [domain] Domain-To-Be

ESS Elaborated Context Diagram

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 111

ESS Logical Decomposition (Partial)

«system»
ESS

«logical»
External I/F Manager

«logical»
I/O Item Manager

«logical»
Support Service Manager

«logical»
Entry/Exit Monitor

«logical»
Entry Sensor

«logical»
Exit Sensor «logical»

Emergency Monitor

«logical»
Emer Serv I/F

«logical»
Event Monitor

«logical»
Alarm I/F

«logical»
Alarm Generator

«logical»
User Validation Mgr

«logical»
Customer I/F

«logical»
Customer Input Mgr

«logical»
Customer Output Mgr

«logical»
Sys Config Mgr

«logical»
Sensor

«logical»
Fault Mgr

«logical»
Perimeter Sensor

«logical»
Environment Sensor

*

*

*

*

bdd [package] ESS Logical Decomposition



4/15/2008 Copyright © 2006-2008 by Object Management Group. 112

Detect Entry Subsystem Scenario

act  detectEntry

entry/exit subsystem

Entry Sensor

Sense State Change

di : Door Input

wi : Window Input ee : SensedEntry

«logical»
Entry/Exit Monitor

Detect Event
sensor : SensorOutput status

«logical»
Event Monitor

Alert Status

Record Event

log : Event

statusestatus

Event Log
«store»

«logical»

«subsystem»

Door Input
«continuous»

Window Input
«continuous»

[State=BreakInResponse]

[Else]



4/15/2008 Copyright © 2006-2008 by Object Management Group. 113

Elaborating Logical Component

•Added operations from Detect Entry / Detect Exit logical scenario

•These operations support entry/exit subsystem

Sense State Change()

Entry/Exit Monitor

Detect event()

Entry Sensor
«logical» «logical»

Event Monitor
«logical»

Record event()
«store»: Event Log



4/15/2008 Copyright © 2006-2008 by Object Management Group. 114

ESS Logical Design – 
Example Subsystem

ibd [subsystem]Entry/Exit Subsystem
subsystem Entry/Exit Subsystem

«logical»
m+n

: Entry Sensor

«logical»
: Entry/Exit Monitor

«logical»
m+n

: Exit Sensor

«logical»
: Event Monitor

«store»
: Event Log

 : SensedExit

 : Door Input

 : Door Input

 : SensedEntry

 : Window Input

 : Window Input

 : Entry/Exit Alert Status

 : Alert Status

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 115

«logical»
: Entry Sensor

«logical»
: Exit Sensor

«logical»
: Emergency Monitor

«logical»
: Emer Serv I/F

«logical»
: Event Monitor

«store»
: Event Log

«logical»
: Alarm I/F

«logical»
: Alarm Generator

«logical»
: Perimeter Sensor

«logical»
: Environment Sensor

«logical»
: Fault Mgr

«logical»
: Customer Output Mgr

«logical»
: Customer I/F

«logical»
: Entry/Exit Monitor

: Door Input

: Window Input

: Door Input

: Window Input

: EmergencyData

: Emergency
ServicesOut

: Alert Status

: AlarmCmd

: AlarmSignal

: Alert Status

: BIT

: FaultReport

: Fault

: BIT

: BIT

: BIT

: Lamp

: Entry/Exit Alert Status

: SensedExit

: SensedEntry

ibd [system] ESS

ESS Logical Design (Partial)

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 116

Logical Components

Type
Entry 
Sensor Exit Sensor

Perimeter 
Sensor

Entry/Exit 
Monitor

Event 
Monitor

Site 
Comms I/F Event Log

Customer 
I/F

Customer 
Output Mgr

System 
Status Fault Mgr

Alarm 
Generator Alarm I/F

«software» Device Mgr X
SF Comm I/F X
User I/F X
Event Mgr X X
Site Status Mgr X
Site RDBMS X X
CMS RDBMS X

«data» Video File X
CMS Database X
Site Database X X

«hardware» Optical Sensor X X
DSL Modem X
User Console X
Video Camera X
Alarm X   

   
  P

hy
si

ca
l C

om
po

ne
nt

s

• Allocating Logical Components to HW, SW, Data, and Procedures 
components

ESS Allocation Table (partial)

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 117

ESS Deployment View
ESS

«node» *
: MF Residence Installation

«node»
: Central Monitoring Station

«hardware»
: CM Server

allocatedFrom
«software» S/W Distrib Mgr
«software» System CM

«hardware»
: DB Server

allocatedFrom
«software» CMS RDBMS
«data» CMS Database

«hardware»
: MS LAN «hardware»

: Application Server

allocatedFrom
«software» MS Comm I/F
«software» MS Event Monitor
«software» PS Report Mgr
«software» PS Request Mgr
«software» Site Interface Mgr

«hardware»
: Video Server

«hardware»
: PS Comm

I/F

«hardware»
: Help Desk Client

«internal actor»
: Help Desk Operator

«node» *
: Business Installation

«hardware»
: Phone Lines

«external»
: Comm
Network

*: SF Residence Installation

«hardware»
2

: Video Camera
«hardware»

: DSL Modem

«hardware»
: Site Hard Disk

allocatedFrom
«data» Site Database

«hardware» *

: Optical Sensor

«hardware»
: Alarm

«hardware»
2

: DVD-ROM Drive

allocatedFrom
«data» Site Database

«hardware»
: NW Hub

allocatedFrom
«software» SF Comm I/F

«hardware»
: User Console

«hardware»
: Site Processor

allocatedFrom
«software» Device Mgr
«software» Event Mgr
«software» Site Config Mgr
«software» Site RDBMS
«software» Site Status Mgr
«software» User I/F
«software» User Valid Mgr

ibd [system] ESS

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 118

ESS Parametric Diagram 
To Support Trade-off Analysis

«moe»
MissionResponseTime

«moe»
OperationalAvailability

«moe»
OperationalCost

of1 : ObjectiveFunction

OA

CEMRT

OC

«moe»
CostEffectiveness

{CE= Sum(w1*u(OA)+w2*u
(MRT)+w3*u(OC))}

par [block] EnterpriseEffectivenessModel

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 119

Description

Door[1]
/:Optical Sensor

«sut»
«hardware»

:Site Processor

«sut»
«hardware»

:DSL Modem

«sut»
«hardware»

Window[4]
/:Optical Sensor

«sut»
«hardware»:IntruderEmulator

«testComponent»

seq seq
Intruder enters through front 
door

Enter

Door sensor detects entry : SensedEntry
New alert status sent to central 
system

IntruderEntry : 
Alert Status

Intruder leaves through lounge 
window

Exit

Window sensor detects exit : SensedExit
Changed alert status sent to 
central system

Intruder Exit : 
Alert Status

sd Entry/Exit Detection Test

Entry/Exit Test Case

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



4/15/2008 Copyright © 2006-2008 by Object Management Group. 120

OOSEM Browser View 
Artisan Studio™ Example

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006



SysML in a Standards Framework



4/15/2008 Copyright © 2006-2008 by Object Management Group. 122

Systems Engineering Standards 
Framework (Partial List)

SADTSADT

Process
Standards

Modeling & 
Simulation
Standards

Modeling 
Methods

FEAF Zachman FWDoDAF

HPHP

Architecture 
Frameworks

Other

MARTEMARTEIDEF0

Interchange & 
Metamodeling 
Standards

STEP/AP233STEP/AP233XMI

MODAF

MathMLHLA
System Modeling Simulation & Analysis

EIA 632 CMMIISO 15288 IEEE 1220

OOSE

MOF

SysML



4/15/2008 Copyright © 2006-2008 by Object Management Group. 123

ISO/IEC 15288 
System Life Cycle Processes

Enterprise Processes

5.3.25.3.2
Enterprise Environment Enterprise Environment 

Management ProcessManagement Process

5.3.35.3.3
Investment Investment 

Management ProcessManagement Process

5.3.65.3.6
Resource Resource 

Management ProcessManagement Process

5.3.55.3.5
Quality Quality 

Management ProcessManagement Process

5.3.45.3.4
System Life Cycle System Life Cycle 

Processes ManagementProcesses Management

5.2.35.2.3
Supply ProcessSupply Process

5.2.25.2.2
Acquisition ProcessAcquisition Process

Agreement Processes

Project Processes

5.4.25.4.2
Project Planning ProcessProject Planning Process

5.4.35.4.3
Project AssessmentProject Assessment

ProcessProcess

5.4.65.4.6
Risk Management Risk Management 

ProcessProcess

5.4.55.4.5
DecisionDecision--Making ProcessMaking Process

5.4.45.4.4
Project Control ProcessProject Control Process

5.4.85.4.8
Information ManagementInformation Management

ProcessProcess

5.4.75.4.7
Configuration ManagementConfiguration Management

ProcessProcess

Technical Processes
5.5.25.5.2

Stakeholder Stakeholder ReqtsReqts
Definition ProcessDefinition Process

5.5.35.5.3
ReqtsReqts Analysis ProcessAnalysis Process

5.5.65.5.6
Integration ProcessIntegration Process

5.5.55.5.5
Implementation ProcessImplementation Process

5.5.85.5.8
Transition ProcessTransition Process

5.5.75.5.7
Verification ProcessVerification Process

5.5.95.5.9
Validation ProcessValidation Process

5.5.105.5.10
Operation ProcessOperation Process

5.5.115.5.11
Maintenance ProcessMaintenance Process

5.5.125.5.12
Disposal ProcessDisposal Process

5.5.45.5.4
Architectural Design ProcessArchitectural Design Process

Presenter
Presentation Notes
LM-IEP is a standards based Process Standard, NOT a standard process!
The industry standards we have used as source standards are shown to the left of the slide. These are color coded to denote what standards have or will be incorporated into the LM-IEP Standard, by version number. 
As shown in the slide, the LM-IEP Standard contains the normative (obligatory for conformance) requirements from each of the source standards. It also contains a normative process architecture. These requirements are being applied to all Lockheed Martin organizations. 
To conform to the LM-IEP you will probably need to update your Organizational Standard Process (OSP) set. The OSP for your site also needs to conform to the domain specific standards and regulatory requirements that are applicable to your domain (example would be FAA and airworthiness requirements for aircraft manufacturers). 
The OSP is typically tailored when applied to programs or projects. The tailored OSP is called the project defined process. The chart shows the hierarchical relationship of the LM-IEP to your OSP and project processes.



4/15/2008 Copyright © 2006-2008 by Object Management Group. 124

Standards-based Tool Integration 
with SysML

•• 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
--

• .....• .....
• .....

SV4 OV2

OV7 TV2

••
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

• .....
• .....
• .....AP233/XMI

AP233/XMI

Systems Modeling
Tool

Model/Data
Interchange

Other Engineering
Tools



4/15/2008 Copyright © 2006-2008 by Object Management Group. 125

Participating SysML Tool Vendors

• Artisan (Studio)
• EmbeddedPlus (SysML Toolkit)

– 3rd party IBM vendor

• No Magic (Magic Draw)
• Sparx Systems (Enterprise Architect)
• IBM / Telelogic (Tau and Rhapsody)
• TopCased
• Visio SysML template 



Transitioning to SysML



4/15/2008 Copyright © 2006-2008 by Object Management Group. 127

Using Process Improvement 
To Transition to SysML



4/15/2008 Copyright © 2006-2008 by Object Management Group. 128

MBSE Transition Plan

• MBSE Scope
• MBSE Responsibilities/Staffing
• Process guidance

– High level process flow (capture in SEMP)
– Model artifact checklist
– Tool specific guidance

• Tool support
– Modeling tool
– Requirements management
– CM

• Training
• Schedule



4/15/2008 Copyright © 2006-2008 by Object Management Group. 129

Typical Integrated Tool 
Environment

Project Management

C
M

/D
M

Pr
od

uc
t D

at
a 

M
an

ag
em

en
t

R
eq

ui
re

m
en

ts
 M

an
ag

em
en

t

Ve
rif

ic
at

io
n 

&
 V

al
id

at
io

n

Si
m

ul
at

io
n 

&
 V

is
ua

liz
at

io
nSoS/ DoDAF / Business Process Modeling

System Modeling
SysML

Software Modeling
UML 2.0

Hardware Modeling
VHDL, CAD, .. En

gi
ne

er
in

g 
A

na
ly

si
s



Summary and Wrap up



4/15/2008 Copyright © 2006-2008 by Object Management Group. 131

Summary

• SysML sponsored by INCOSE/OMG with broad industry and 
vendor participation and adopted in 2006

• SysML provides a general purpose modeling language to support 
specification, analysis, design and verification of complex 
systems
– Subset of UML 2 with extensions
– 4 Pillars of SysML include modeling of requirements, behavior, 

structure, and parametrics
• Multiple vendor implementations available
• Standards based modeling approach for SE expected to improve 

communications, tool interoperability, and design quality 
• Plan SysML transition as part of overall MBSE approach
• Continue to evolve SysML based on user/vendor/researcher 

feedback and lessons learned



4/15/2008 Copyright © 2006-2008 by Object Management Group. 132

References
• OMG SysML website 

– http://www.omgsysml.org
– Refer to current version of SysML specification, vendor links, tutorial, and papers

• A Practical Guide to SysML (Morgan Kaufmann) by Friedenthal, Moore, Steiner
• UML for Systems Engineering RFP

– OMG doc# ad/03-03-41
• UML 2 Superstructure v2.1.2

– OMG doc# formal/2007-11-02
• UML 2 Infrastructure v2.1.2

– OMG doc# formal/2007-11-04

PAPERS
• Integrating Models and Simulations of Continous Dynamics into SysML

– Thomas Johnson, Christiaan Paredis, Roger Burkhart, Jan ‘2008
• Simulation-Based Design Using SysML - Part 1: A Parametrics Primer

– RS Peak, RM Burkhart, SA Friedenthal, MW Wilson, M Bajaj, I Kim
• Simulation-Based Design Using SysML - Part 2: Celebrating Diversity by Example

– RS Peak, RM Burkhart, SA Friedenthal, MW Wilson, M Bajaj, I Kim
• SysML and UML 2.0 Support for Activity Modeling,

– Bock. C., vol. 9 no.2, pp. 160-186, Journal of International Council of Systems Engineering, 2006. 
• The Systems Modeling Language,

– Matthew Hause, Alan Moore, June ' 2006. 
• An Overview of the Systems Modellng Language for Products and Systems Development,

– Laurent Balmelli, Oct ' 2006. 
• Model-driven systems development,

– L. Balmelli, D. Brown, M. Cantor, M. Mott, July ' 2006. 

TUTORIAL AUTHORS
• Sanford Friedenthal (sanford.friedenthal@lmco.com)
• Alan Moore (alan.moore@mathworks.co.uk)
• Rick Steiner (fsteiner@raytheon.com)

http://www.omgsysml.org/

	OMG Systems Modeling Language �(OMG SysML™)�Tutorial
	OMG SysML™ Specification
	Objectives & Intended Audience
	Topics
	Motivation & Background
	SE Practices for Describing Systems
	System Modeling
	Model Based Systems Engineering Benefits
	System-of-Systems
	Modeling at Multiple Levels �of the System
	Stakeholders Involved�in System Acquisition
	What is SysML?
	What is SysML (cont.)
	UML/SysML Status
	Diagram Overview & Language Concepts
	Relationship Between SysML and UML
	SysML Diagram Taxonomy
	4 Pillars of SysML – ABS Example
	SysML Diagram Frames
	Structural Diagrams
	Package Diagram
	Package Diagram�Organizing the Model
	Package Diagram - Views
	Blocks are Basic Structural Elements
	Property Types
	Using Blocks
	Block Definition vs. Usage
	Internal Block Diagram (ibd)�Blocks, Parts, Ports, Connectors & Flows
	Reference Property Explained
	SysML Ports
	Port Notation
	Delegation Through Ports
	Parametrics
	Defining Vehicle Dynamics
	Vehicle Dynamics Analysis
	Behavioral Diagrams
	Activities
	Activity Diagram
	Routing Flows
	Actions Process Flow of �Control and Data
	An Action Can Invoke Another Activity
	Semantics for Activity Invocation
	Common Actions
	Activity Diagram Example�With Streaming Inputs and Outputs
	Distill Water Activity Diagram (Continuous Flow Modeling)
	Example – Operate Car
	Activity Diagrams�Pin vs. Object Node Notation
	Explicit Allocation of Behavior to Structure Using Swimlanes
	Activity Decomposition
	SysML EFFBD Profile
	Interactions
	Black Box Interaction (Drive)
	Black Box Sequence (StartVehicle)
	White Box Sequence (StartVehicle)
	Primary Interaction Operators
	Other Interaction Operators
	Trial Result of Vehicle Dynamics
	State Machines
	Operational States (Drive)
	Use Cases
	Operational Use Cases
	Cross-cutting Constructs
	Allocations
	Different Allocation Representations�(Tabular Representation Not Shown)
	SysML Allocation of SW to HW
	Requirements
	Requirements Breakdown
	Example of Derive/Satisfy Requirement Dependencies
	Problem and Rationale
	Stereotypes & Model Libraries
	Stereotypes
	Applying a Profile and �Importing a Model Library
	Cross Connecting Model Elements
	SysML Modeling�as Part of the SE Process
	Distiller Sample Problem
	Distiller Problem Statement
	Distiller Types
	Distiller Problem – Process Used
	Distiller Problem – Package Diagram: Model Structure and Libraries
	Distiller Example Requirements Diagram�
	Distiller Example: �Requirements Tables
	Distiller Example – Activity Diagram:� Initial Diagram for DistillWater
	Distiller Example – Activity Diagram: Control-Driven: Serial Behavior
	Distiller Example – Block Definition Diagram: DistillerBehavior
	Distiller Example – State Machine Diagram: States of H2O
	Distiller Example – Activity Diagram: �I/O Driven: Continuous Parallel Behavior
	Distiller Example – Activity Diagram:�No Control Flow, ActionPin Notation, �Simultaneous Behavior
	Distiller Example – Activity Diagram �(with Swimlanes): DistillWater
	Distiller Example – Block Definition Diagram: DistillerStructure
	Distiller Example – Block Definition Diagram: Heat Exchanger Flow Ports
	Distiller Example – Internal Block Diagram: Distiller Initial Design
	Distiller Example –Table: �Functional Allocation
	Parametric Diagram: Heat Balance
	Distiller Example – Heat Balance Results
	Distiller Example – Activity Diagram: Updated DistillWater
	Distiller Example – Internal Block Diagram: Updated Distiller
	Distiller Example – Use Case and Sequence Diagrams
	Distiller Example – Internal Block Diagram: Distiller Controller
	Distiller Example – State Machine Diagram: Distiller Controller
	OOSEM – ESS Example
	System Development Process
	System Modeling Activities – OOSEM�Integrating MBSE into the SE Process
	Enhanced Security System Example
	ESS Requirements Flowdown
	Operational View Depiction
	ESS Enterprise As-Is Model
	ESS Operational Enterprise To-Be Model
	System Use Cases - Operate
	System Scenario: Activity Diagram�Monitor Site (Break-In)
	ESS Elaborated Context Diagram
	Slide Number 111
	Slide Number 112
	Elaborating Logical Component
	ESS Logical Design – �Example Subsystem
	ESS Logical Design (Partial)
	ESS Allocation Table (partial)
	ESS Deployment View
	ESS Parametric Diagram �To Support Trade-off Analysis
	Entry/Exit Test Case
	OOSEM Browser View�Artisan Studio™ Example
	SysML in a Standards Framework
	Systems Engineering Standards Framework (Partial List)
	ISO/IEC 15288 �System Life Cycle Processes
	Standards-based Tool Integration �with SysML
	Participating SysML Tool Vendors
	Transitioning to SysML
	Using Process Improvement �To Transition to SysML
	 MBSE Transition Plan
	Typical Integrated Tool Environment
	Summary and Wrap up
	Summary
	References

